The textbook gives the answer as:
By Fermat’s little theorem, we know that $7^{10} ≡ 1 \pmod{11}$, and so $(7^{10})^k ≡ 1 \pmod{11}$, for every positive integer $k$.
Therefore, $7^{222} = 7^{22\cdot10 + 2} = (7^{10})^{22}7^2 ≡ (1)^{22}\cdot 49 ≡ 5 \pmod{11}$.
Hence, $7^{222}\mod{11} = 5$.
The part that I do not understand is $(7^{10})^{22}7^2 ≡ (1)^{22}\cdot 49 ≡ 5 \pmod {11}$.
Can someone please explain to me why can we say: $(7^{10})^{22}7^2 ≡ (1)^{22}\cdot49$