Possible Duplicate:
“Binomial theorem”-like identities
The binomial formula describes the expansion of the $n$th power of the sum $(a+b)$:
$$(a+b)^n = \sum_{k = 0}^n {n\choose k}a^kb^{n-k}$$
In calculus, there is a generalization of the product rule called Leibniz's rule, which describes the expansion of the $n$th derivative of the product of two functions $f$ and $g$:
$$(fg)^{(n)} = \sum_{k = 0}^n {n\choose k}f^{(k)}g^{(n-k)}$$
It's not difficult to prove using the product rule and induction, what I'm really trying understand here is why the formula is true. Is there a way to prove it using the binomial formula? How are these two formulas related? Is there a combinatorial proof for Leibniz's rule like there is for the binomial formula?
I understand this question is a bit vague, but I hope you'll agree that these two formulas look so similar it just feels like there should be some relation between the two. Of course this is not necessarily true, but I'm hoping it's not just a crazy coincidence.