-3

What instance that this equation would be true?

$|x+y|=|x|+|y|$ Given that $x$, $y$ are elements of real numbers.

2 Answers2

10

$|x+y|=|x|+|y| \iff |x+y|^2 = (|x|+|y|)^2 \iff x^2+2xy+y^2=x^2+2|xy|+y^2 \iff xy=|xy| \iff xy \geq 0$.

DeepSea
  • 77,651
1

The statement will be true when any of the following conditions is satisfied:

(i) $x=0$ or $y=0$ or both are zero,

(ii) $x=y$,

(iii) $x\ge0$ and $y\ge0$,

(iv) $x\le0$ and $y\le0$.