This solution is motivated by DonAntonio's solution to the question Abelianization of free group is the free abelian group (Abelianization of free group is the free abelian group)
Lemma. Consider $a_1^{k_1}a_2^{k_2}\cdots a_n^{k_n}\in F[A]$,
where $a_i\in A$ and $k_i\in \Bbb{Z}$.
Note that $a_1, a_2, ..., a_n$ are not necessarily distinct.
Suppose that
\begin{eqnarray*}
b_1 &=& a_{11}=a_{12}=\cdots=a_{1t_1}, \\
b_2 &=& a_{21}=a_{22}=\cdots=a_{2t_2}, \\
\vdots & \vdots& \vdots\\
b_s &=& a_{s1}=a_{s2}=\cdots=a_{st_s}, \\
\end{eqnarray*}
where $a_{jk}\in \{a_1, a_2, ..., a_n\}$
and $b_1, b_2, ..., b_s$ are distinct.
If $a_1^{k_1}a_2^{k_2}\cdots a_n^{k_n}\in C$,
then
\begin{eqnarray*}
0
&=& r_{11}+r_{12}+\cdots+r_{1t_1} \\
&=& r_{21}+r_{22}+\cdots+r_{2t_2} \\
&\vdots& \vdots \\
&=& r_{s1}+r_{s2}+\cdots+r_{st_s}. \\
\end{eqnarray*}
This lemma can be proved by examining the definition of commutator subgroups.
Now, $\{aC\mid a\in A\}$ is a basis (linearly independent) for $F[A]/C$ follows immediately from this lemma.
For if $a_1 C, a_2 C, ..., a_n C$ are distinct (this is a requirement in the definition of a basis for a free abelian group)
and $(a_1 C)^{k_1}(a_2 C)^{k_2}\cdots (a_n C)^{k_n}=C$,
then $(a_1^{k_1}a_2^{k_2}\cdots a_n^{k_n})C=C$ and $a_1^{k_1}a_2^{k_2}\cdots a_n^{k_n}\in C$.
It follows that $k_1=k_2=\cdots=k_n=0$ by the lemma.
It also can be proved by using the universal property (see Theorem II.1.1.(iv) in Hungerford's Algebra).
However, this method also uses the lemma when proving the homomorphism is one-to-one.
Universal Property for Free Abelian Groups.
If $H$ is the free abelian group on $A$,
then given an abelian group $G$ and function $f:A\to G$,
there exists a unique homomorphism of groups $\overline{f}:H\to G$ such that $\overline{f}\iota=f$.
Let $F[A]/C$ be the abelian group and define $f:A\to F[A]/C$ by $f(a)=aC$ in the theorem.
Then there exists a homomorphism $\overline{f}:H \to F[A]/C$ such that $\overline{f}\iota=f$.
For $k_1 a_1+k_2 a_2+\cdots +k_n a_n\in H$,
since $H$ is abelian,
we can assume $a_1, a_2, ..., a_n$ are distinct.
\begin{eqnarray*}
&\text{If}& \overline{f}(k_1 a_1+k_2 a_2+\cdots +k_n a_n)=C \\
&\Rightarrow& \overline{f}(a_1)^{k_1}\overline{f}(a_2)^{k_2}\cdots \overline{f}(a_n)^{k_n}=C \\
&\Rightarrow& \overline{f}(\iota(a_1))^{k_1}\overline{f}(\iota(a_2))^{k_2}\cdots \overline{f}(\iota(a_n))^{k_n}=C \\
&\Rightarrow& f(a_1)^{k_1}f(a_2)^{k_2}\cdots f(a_n)^{k_n}=C\\
&\Rightarrow& (a_1 C)^{k_1} (a_2 C)^{k_2}\cdots (a_n C)^{k_n}=C \\
&\Rightarrow& a_1^{k_1}a_2^{k_2}\cdots a_n^{k_n}\in C\\
&\stackrel{\text{Lemma}}{\Rightarrow}& k_1=k_2=\cdots =k_n=0.
\end{eqnarray*}
That is, $\ker{\overline{f}}=0$ and $\overline{f}$ is one-to-one.