$$ \begin{align} \int_0^{2\pi}\log|e^{i\theta} - 1|d\theta &= \int_0^{2\pi}\log(1-\cos(\theta))d\theta \\ &= \int_0^{2\pi}\log(\cos(0) - \cos(\theta))\,d\theta\\ &= \int_0^{2\pi}\log\left(-2\sin\left(\frac{\theta}{2}\right)\sin\left(\frac{-\theta}{2}\right)\right)\,d\theta\\ &= \int_0^{2\pi}\log\left(2\sin^2\left(\frac{\theta}{2}\right)\right)\,d\theta\\ &= \int_0^{2\pi}\log(2)d\theta + 2\int_0^{2\pi}\log\left(\sin\left(\frac{\theta}{2}\right)\right)\,d\theta\\ &= 2\pi \log(2) + 4\int_0^\pi \log\big(\sin(t)\big)\,dt\\ &=2\pi \log(2) - 4\pi \log(2) = -2\pi \log(2) \end{align} $$
Where $\int_0^\pi \log(\sin(t))\,dt = -\pi \log(2)$ according to this. The first step where I removed the absolute value signs is the one that worries me the most. Thanks.