-2

Calculate the following limit where $n \in \mathbb{Z}$ and log is to the base $e$ $$\lim_{x\to\infty} \log \prod_{n=2}^{x} \Bigg(1+\frac{1}{n}\Bigg)^{1/n}$$

3 Answers3

2

Hint:

Expressing $\ln\left(1+\dfrac1n\right)$ by Taylor expansion leads to

$$\sum_{n=2}^\infty\frac1n\left(\frac1{n}-\frac1{2n^2}+\frac1{3n^3}\cdots\right)=\sum_{n=2}^\infty \frac1{n^2}-\frac1{2n^3}+\frac1{3n^4}\cdots=\sum_{k=2}^\infty\frac{(-1)^k\zeta(k)}{k-1}.$$

Not really easier.

  • interesting.....Thanks – user252347 Jul 04 '15 at 09:05
  • As no closed form of the summation of $1/n^3$ is know, you can't really find a exact answer. – Ahmed S. Attaalla Jul 04 '15 at 09:11
  • @AhmedS.Attaalla: there is indeed no closed form for $\zeta(3)$, but that doesn't mean that there is no closed form for a sum of $\zeta$'s. For instance, $\sum(\zeta(n)-1)=1$ and $\sum(\zeta(n)-1)/n=1-\gamma$. –  Jul 04 '15 at 09:14
  • As we know the sum of $1/n^2$ is $pi^2/6$ if we're able to come up with a closed form of this summation than we would be able to come up with a closed form for $1/n^3$. – Ahmed S. Attaalla Jul 04 '15 at 09:16
  • Or am I wrong @Yves Daoust – Ahmed S. Attaalla Jul 04 '15 at 09:19
  • @AhmedS.Attaalla No closed form is known for the odd powers; the sums for even powers are related to the Bernoulli Numbers. See https://en.wikipedia.org/wiki/Particular_values_of_Riemann_zeta_function –  Jul 04 '15 at 09:24
1

For the confirm that there is no closed form for series found by Yves Daoust, we can use the identity $$\sum_{k\geq2}\frac{\left(-1\right)^{k}x^{k}\zeta\left(k\right)}{k}=\gamma x+\log\left(\Gamma\left(x+1\right)\right),\,\,-1<x\leq1. $$ Take the derivate to get $$\sum_{k\geq2}\left(-1\right)^{k}x^{k-1}\zeta\left(k\right)=\gamma+\psi\left(x+1\right) $$ hence, assuming $x\neq0 $ $$\sum_{k\geq2}\left(-1\right)^{k}x^{k-2}\zeta\left(k\right)=\frac{\gamma}{x}+\frac{\psi\left(x+1\right)}{x} $$ and now if we integrate from $0 $ to $1 $ $$\sum_{k\geq2}\frac{\left(-1\right)^{k}\zeta\left(k\right)}{k-1}=\int_{0}^{1}\frac{\gamma+\psi\left(x+1\right)}{x}dx $$ and there is no closed form, but only a numerical values ($1.257746...$). See for example here.

Marco Cantarini
  • 33,062
  • 2
  • 47
  • 93
  • Do these series for $\gamma$ and $\psi(z+1)$ help? $$ \gamma= \sum_{n=1}^\infty \left(\frac{2}{n}-\sum_{j=n(n-1)+1}^{n(n+1)} \frac{1}{j}\right) $$ http://math.stackexchange.com/a/1591256/134791 $$\psi(z+1)=\sum_{n=1}^\infty \left(-\frac{1}{n}-\frac{1}{n+z} +\sum_{j=n(n-1)+1}^{n(n+1)}\frac{1}{j} \right), z \neq -1,-2,-3,...$$ http://math.stackexchange.com/a/1607855/134791 – Jaume Oliver Lafont Jan 14 '16 at 17:26
1

Hint: You might want first check if the integral $$ \int_2^x \frac{1}{\xi} \log\left( 1+\frac{1}{\xi} \right) \mathrm d \xi $$ remains finite for $x\to\infty$.

Solution:

I got the limit $-\operatorname{Li}_2(-\frac12) = -\sum_{k=1}^\infty \frac{1}{(-2)^k k^2} \approx 0.45$. Not that satisfying...

user251257
  • 9,229