In general, let $d$ be a natural number and $f(d)$ the greatest common divisor of all numbers of the form $p^d-1$, where $p\geq d+2$ is a prime integer. Denote by $g(d)$ the product of all numbers of the form $q^k$, where $q$ is an odd (positive) prime and $k$ is the largest positive integer such that $q^{k-1}(q-1)$ divides $d$. We also define
$$h(d):=\left\{\begin{array}{ll}
2 & ,\text{ if }d\text{ is odd}\,,
\\
2^{k+2} & ,\text{ if }d\text{ is even and }k\text{ is the largest exponent of }2\text{ in the factorization of }d\,.
\end{array}\right.
$$
Then, I claim that $f(d)=g(d)\cdot h(d)$.
First, we shall verify that $g(d)$ and $h(d)$ divide $f(d)$. For $g(d)$, we have to invoke Euler's totient function and Euler's Theorem. For $h(d)$, if $d$ is odd, the claim is trivial, and if $d=2^ks$ with $s$ being odd, then $p^d-1=\left(p^s-1\right)\left(p^s+1\right)\cdot \prod_{i=1}^{k-1}\,\left(p^{2^is}+1\right)$, and we see that $8=2^3$ divides $\left(p^s-1\right)\left(p^s+1\right)$, whereas $2$ divides each $p^{2^is}+1$ for $i=1,2,\ldots,k-1$. Hence, $g(d)\cdot h(d)\mid f(d)$, as desired.
Now, we claim that $f(d) \mid g(d)\cdot h(d)$. First, if $f(d)$ is divisible by $q^k$, where $q$ is an odd (positive) prime and $k\in\mathbb{N}$ such that $q^{k-1}(q-1)$ does not divide $d$, then $p^d\equiv 1\pmod{q^k}$ for every prime $p\geq d+2$. Hence, $p^{\gcd\left(d,q^{k-1}(q-1)\right)}\equiv 1\pmod{q^k}$ for all prime $p\geq d+2$. Let $\omega$ be a primitive element modulo $q^k$, then there exists a prime $p\equiv \omega\pmod{q^k}$ (by Dirichlet's Theorem). Hence, $\omega^{\gcd\left(d,q^{k-1}(q-1)\right)}\equiv 1\pmod{q}$. However, due to the definition of $\omega$, we must have $q^{k-1}(q-1)=\gcd\left(d,q^{k-1}(q-1)\right)$, which contradicts the assumption that $q^{k-1}(q-1)$ does not divide $d$. By taking a prime $p\geq d+2$ such that $p\equiv 3\pmod{8}$, we can see that $2^{h(d)}\mid f(d)$ but $2^{h(d)+1}\nmid f(d)$.
In summary, $f(d)=g(d)\cdot h(d)$ for every $d\in\mathbb{N}$. Note that, if $d$ is odd, then $g(d)=1$, whence $f(d)=2$ for all odd $d$. For example, if $d=12$, then $h(d)=2^{2+2}=2^4=16$ and $g(d)=3^2\cdot 5\cdot 7\cdot 13=4095$. That is, $f(d)=2^4\cdot 3^2\cdot 5\cdot 7\cdot 13=65520$.