-1

Let $f(x)$ be a polynomial in $x$ With integer coefficient. If for natural numbers $a,b,c$, $f(a)=b, f(b)=c, f(c)=a$ Prove that $a=b=c$.

Satvik Mashkaria
  • 3,636
  • 3
  • 19
  • 37

2 Answers2

9

This is not true: Consider the polynomial $f(x)=-\frac{3 x^2}{2}+\frac{11x}{2}-2$. Then $f(1)=2$, $f(2)=3$, $f(3)=1$.

(Edit: This is the answer to a previous version of the question, which didn't specify that the coefficients must be integers. For a hint or an answer to the modified version, see André Nicolas' answer above or this question.)

n55
  • 1,563
4

Hint: For the modified question, note that $a-b$ divides $f(a)-f(b)$.

So $a-b$ divides $b-c$. Similarly, $b-c$ divides $c-a$ and $c-a$ divides $a-b$.

André Nicolas
  • 507,029