I have to calculate: $$\nabla^2 \frac{e^{ikr}}{r}$$ which I know to be $\displaystyle -k^2 \frac{e^{ikr}}{r} $ (from a lecture).
Doing it by hand: $$ \nabla^2 f(r) = \frac{1}{r^2} \frac{\partial}{\partial{r}} \left(r^2 \frac{\partial}{\partial{r}}\right) \nabla^2 \left(\frac{e^{ikr}}{r}\right) = \frac{1}{r^2} \frac{\partial}{\partial{r}} \left(r^2 \frac{\partial(\frac{e^{ikr}}{r})}{\partial{r}}\right) = \frac{1}{r^2} \frac{\partial}{\partial{r}} \left(r^2 \frac{ikre^{ikr} - e^{ikr}}{r^2}\right) = \frac{1}{r^2} \left(i^2k^2re^{ikr} + ike^{ikr} - ike^{ikr}\right) = -k^2 \frac{e^{ikr}}{r} $$ but Wolfram-Alpha gives this.
Am I missing something or is Wolfram-Alpha wrong?