1

Let $f_n:\mathbb{R}\rightarrow\mathbb{R}$ be a sequence of non-negative Lebesgue measurable functions and suppose $\lim_{n\rightarrow \infty}\int_\mathbb{R}f_n=0.$ Then, must it be that $\lim_{n\rightarrow \infty}f_n(x)=0 $ almost everywhere? I can easily prove $\liminf_{n\rightarrow \infty}f_n(x)=0 $ almost everywhere by Fatou's lemma, but it seems somewhat hard to prove the original statement.

1 Answers1

2

Consider the characteristic functions of $[0,1],[0,1/2],[1/2,1],[0,1/3],[1/3,2/3],[2/3,1], \dots $

zhw.
  • 105,693