2

I need to determine how many integer solutions are to this inequality:$$ y_1 +y_2 +y_3 < 100 $$

with $$y_1 > 0,y_2 ∈ [0,10],y_3 ∈ (0,19]$$

I'm having trouble where to start. I know that$$y_1+y_2+y_3=99 $$since $100 $ is not possible to reach. Then I get stuck upon what I should do next.

TIWARI
  • 757
Miriam
  • 101

2 Answers2

4

For any given values of $y_2$ and $y_3$, there are $99 - y_2 - y_3$ values of $y_1$ that work.

Therefore, the answer is $$ \sum_{i = 0}^{10} \sum_{j=1}^{19} 99 - i - j $$

Which you can calculate using the formula $1+2+ \dots n = \dfrac{n(n+1)}{2}$.

Ashkay
  • 1,821
1

Another method would be to let $y_4=99-(y_1+y_2+y_3)$, $\;\;$so $\;\;y_1+y_2+y_3+y_4=99$.

Now let $t_1=y_1-1, \;\;t_2=y_2, \;\;t_3=y_3-1, \;\;t_4=y_4\;\;$ so that $t_i\ge0$ for each i.

Then you want to find the number of integer solutions to

$\;\;\;\;t_1+t_2+t_3+t_4=97\;\;$ where $\;\;t_1\ge0, \;\;0\le t_2\le10,\;\; 0\le t_3\le18, \;\;t_4\ge0$,

which gives $\displaystyle\binom{100}{3}-\binom{89}{3}-\binom{81}{3}+\binom{70}{3}=17,556$.

user84413
  • 27,211