11

The fundamental solution (or Green function) for the Laplace operator in $d$ space dimensions $$\Delta u(x)=\delta(x),$$ where $\Delta \equiv \sum_{i=1}^d \partial^2_i$, is given by $$ u(x)=\begin{cases} \dfrac{1}{(2-d)\Omega_d}|x|^{2-d}\text{ for } d=1,3,4,5,\ldots\\ \dfrac{1}{2\pi}\log|x| \ \ \ \ \ \ \ \ \ \ \ \ \text{for } d=2, \end{cases} $$ where $\Omega_d$ is the $d$-dimensional solid angle $ \Omega_d=2\pi^{d/2}/\Gamma(d/2). $ Indeed, it can be shown directly that for a test function $\varphi$: $$ \int d^dx\,u(x)\Delta\varphi(x)=\varphi(0). $$ I tried to obtain the same result by Fourier transforming the distributional equation $ \Delta u(x)=\delta(x) $ thus $$ -k^2 \widehat u(k)=1\implies u(y)=-\frac{1}{(2\pi)^d}\int\frac{e^{ik\cdot y}}{k^2}d^dk. $$ Now, using $d$ dimensional polar coordinates, we can write $$ u(y)=-\frac{1}{(2\pi)^d}\int_0^{2\pi}d\phi\int_0^{\pi}d\theta_1\int_0^{\pi}d\theta_2\ldots\int_0^{\pi}d\theta_{d-2}\\ \sin\theta_1\sin^2\theta_2\ldots\sin^{d-2}\theta_{d-2}\int_0^\infty{dq}\,q^{d-1}\frac{e^{iq|y|\cos\theta_1}}{q^2} $$ by an appropriate choice of the axis along $y$. Since the integrand depends only on the angle $\theta_1$, we can use: $$ \Omega_d=\int_0^{2\pi}d\phi\int_0^{\pi}d\theta_1\int_0^{\pi}d\theta_2\ldots\int_0^{\pi}d\theta_{d-2} \sin\theta_1\sin^2\theta_2\ldots\sin^{d-2}\theta_{d-2} $$ $$ \implies \int_0^{2\pi}d\phi\int_0^{\pi}d\theta_2\ldots\int_0^{\pi}d\theta_{d-2} \sin^2\theta_2\ldots\sin^{d-2}\theta_{d-2}=\frac{\Omega_d}{2}; $$ $$ u(y)=-\frac{\Omega_d|y|^{2-d}}{2(2\pi)^d}\int_0^{\infty}dl\,l^{d-3}\int_0^{\pi}d\theta\, \sin\theta\, e^{il\cos\theta}=-\frac{\Omega_d |y|^{2-d}}{(2\pi)^{d}}\int_0^\infty dl\,l^{d-4}\, \sin l. $$ The integral in the last line can be manipulated as follows: for $2<\Re e(d)<4$ Wick rotation yields $$ \int_0^\infty dx\, x^{d-4}\, \sin x = \Im m \int_0^\infty dx\, x^{d-4}\, e^{ix}=\Im m \int_0^\infty idy\, (iy)^{d-4}\, e^{-y}=\Im m \left(i e^{id\pi/2}\right)\Gamma(d-3)=\Gamma(d-3)\cos\frac{\pi d}{2}. $$ Of course this must be justified via an appropriate contour integration: see Proof that $ \int_0^\infty x^{d-4}\sin x\, dx = \cos \frac{\pi d}{2} \Gamma(d-3)$, for $2<\Re(d)<4 $?

Now for $2<\Re e(d)<4$ we get: $$ u(x)=-\frac{\Omega_d|x|^{2-d}}{(2\pi)^d}\Gamma(d-3)\cos\frac{\pi d}{2}, $$ which reduces to the familiar $$ -\frac{1}{4\pi|x|} $$ for $d=3+\varepsilon$ as $\varepsilon\to0.$ It even yields $$ \frac{1}{2\pi}\ln|x| $$ for $d=2+\varepsilon$ as $\varepsilon\to0$ if one neglects an $x$-independent pole in $\varepsilon$.

The two expressions we have for $u(x)$ are not trivially coincident in the strip where the latter is defined, and in fact Wolframalpha shows that the coefficients are equal $$ \frac{\Gamma(d/2)}{2 \pi^{d/2}(2-d)}=-\frac{2^{1-d} \Gamma(d-3) \cos(\pi d /2)}{\pi^{d/2}\Gamma(d/2)} $$ in the interval $2\le d \le 4$ only for $d=2$ and $d=3$. So there is no point in trying to show that their expressions coincide in the whole strip. However, is there a way to recover the above expression, which holds for any dimension $d=1,2,3,\ldots$ from the Fourier transform calculation?

The really tricky thing is just the coefficient, though: If $\Delta u(x)=\delta(x)$ then $u(x)=C |x|^{2-d}$ via Fourier transform?

Brightsun
  • 6,693

2 Answers2

3

The following argument works for d>3. From Fourier transform of $1/|x|^{\alpha}$. we know that if $f(x) = 1/|x|^{d-2}$ then $$\widehat f(x) = \frac{\pi^{(d-2)/2}}{\pi \Gamma((d-2)/2)}\frac{1}{x^2}.$$

Since $\Gamma(d/2) = ((d-2)/2)\Gamma((d-2)/2)$, we have $$\widehat f(x) = \frac{(d-2)\pi^{d/2}}{\pi^2 2\Gamma(d/2)x^2} = \frac{(d-2)\Omega_d}{4\pi^2 x^2 }.$$ Therefore, if we take the fundamental solution $$u(x) =\frac{1}{(2-d)\Omega_d |x|^{d-2}}, $$ we obtain $$\widehat u (\xi) = -\frac{1}{4\pi^2 \xi^2}.$$

Hugo
  • 3,775
  • I believe there is still a little ambiguity in the prefactor due to the fact that you use the definition of FT with $2\pi$ in the exponent, but the path is clear. Thanks! – Brightsun Jan 17 '16 at 08:19
  • What is your definition of Fourier transform? – Hermi Apr 07 '20 at 18:19
  • $\widehat{\phi}(x) = \int_{\mathbb R^n} \phi(y)e^{-2\pi i x\cdot y}dy.$ – Hugo Apr 07 '20 at 18:59
2

Just to put everything in the right place, since Hugo uses slightly different conventions. Here If $\Delta u(x)=\delta(x)$ then $u(x)=C |x|^{2-d}$ via Fourier transform? it is shown that if $$ f(x)={C_d}|x|^{1-d} $$ then $$ \widehat f({\xi})=-\frac{1}{|\xi|^2}, $$ which is what we want by the above calculation. Now, to fix the constant, one uses the identity $$ \int_{\mathbb R^d}f(x) \widehat g(x) dx = \int_{\mathbb R^d}\widehat f(\xi) g(\xi) d\xi; $$ choosing conveniently $$ g(x)=e^{-x^2/2}, $$ we know that $$ \widehat g(\xi) = \int_{\mathbb R^d} e^{-i\xi\cdot x}g(x) dx= (2\pi)^{d/2}e^{-\xi^2/2}. $$ So $$ \int_{\mathbb R^n}C_d |x|^{2-d}(2\pi)^{d/2}e^{-x^2/2} dx = -\int_{\mathbb R^d}\xi^{-2} e^{-\xi^2/2} d\xi. $$ Switching to polar coordinates \begin{align} (2\pi)^{d/2}C_d\int_{0}^{+\infty}\rho e^{-\rho^2/2}d\rho &= - \int_0^{+\infty}\rho^{d-3}e^{-\rho^2/2}d\rho \\ (2\pi)^{d/2}C_d\int_{0}^{+\infty} e^{-s/2}ds &= - \int_0^{+\infty}s^{(d-2)/2}e^{-s/2} ds\\ 2(2\pi)^{d/2}C_d &= - 2^{d/2}\int_0^{+\infty}t^{(d-4)/2}e^{-t} dt\\ 2(2\pi)^{d/2}C_d &= - 2^{d/2-1}\int_0^{+\infty}t^{(d-4)/2}e^{-t}\\ C_d &= - \frac{\Gamma\left(\frac{d-2}{2} \right)}{4\pi^{d/2}}\\ &=\frac{\Gamma(d/2)}{2\pi^{d/2}(2-d)}. \end{align}

Brightsun
  • 6,693