1

Find the limit of $\lim_{n \to \infty}({n\over n+1})^n$.

$$\lim_{n \to \infty}({n\over n+1})^n=\lim_{n \to \infty}({n+1-1\over n+1})^n=\lim_{n \to \infty}(1-{1\over n+1})^n$$

What Should I do next?

gbox
  • 12,867

3 Answers3

18

$$ ({n\over n+1})^n={1 \over ({n+1\over n})^n} = {1 \over (1+{1\over n})^n} \to {1 \over e} $$

lhf
  • 216,483
2

$$\begin{align}\lim_{n \to \infty}({n\over n+1})^n=\lim_{n \to \infty}({n+1-1\over n+1})^n&=\lim_{n \to \infty}(1-{1\over n+1})^n\\&=\underbrace{\lim_{n\to\infty}\left[\left(1-\frac{1}{n+1}\right)^{-(n+1)}\right]^{-\frac{n}{n+1}}}_{e^{-\frac{n}{n+1}}}\\&=\frac{1}{e}\end{align}$$

Lucas
  • 1,865
  • As for $e^{-\frac{n}{n+1}}$ we say that $lim_{n \to \infty} -{n \over n+1}=n$? – gbox Jun 26 '15 at 14:06
  • 2
    @gbox $$\lim_{n\to\infty}-\frac{n}{n+1}=-\lim_{n\to\infty}\frac{n+1-1}{n+1}=-\lim_{n\to\infty} (1-\frac{1}{n+1})=-1$$ – Lucas Jun 26 '15 at 14:07
1

Observing that the exponential and logarithm are inverses of each other, you can apply L'Hopital's rule to get: \begin{equation*} \lim_{n\to\infty}(\frac{n}{n+1})^n=\exp \lim_{n\to\infty}(n\ln(\frac{n}{n+1})) =\exp (\lim_{n\to\infty}\frac{\ln(\frac{n}{n+1})}{\frac{1}{n}}) \\ = \exp(\lim_{n\to\infty} -\frac{n}{n+1}) =\exp(\lim_{n\to\infty}\frac{-1}{1+\frac{1}{n}})=\frac{1}{e}. \end{equation*}