Let $F=\mathbb Z_3, V=F^4$.
Let $U=sp\{(1,0,0,0),(1,0,1,0),(0,1,1,1) \} \\W=sp\{(0,0,1,0),(-1,1,0,1),(1,1,1,1) \}$
Find $dim (U\cap W)$
we have $v\in U \text{ and } v\in W$ so $v=v$ therefore: $au_1+bu_2+cu_3=xw_1+yw_2+zw_3$ and after some algebra trying to find $a,b,c$ I get: $a=z-x\\ b=x-y\\c=y+z$
So $U\cap W = \{(a,b,c)|x(-1,1,0)+y(0,-1,1)+z(1,0,1) \}=sp\{(-1,1,0),(0,-1,1)(1,0,1)\}$
But this is in $F^3$! Why did I lose a dimension in this process?