$x_0, x_1, ... x_n$ are distinct points and $A(x)=\prod_{j=0}^n{(x-x_j)}$, $A_k(x)=\prod_{j=0, j\neq k}^n{(x-x_j)}$, $L_k(x)=\frac{A_k(x)}{A_k(x_k)}$. Prove each of the following:
a) $\sum_{k=0}^{n}{L_k(x)}$=1 and $\sum_{k=0}^{n}{\frac{A_k^\prime(x)}{A^\prime(x_k)}}$=0 for all x
b)$\sum_{k=0}^{n}{\frac{1}{A^\prime(x_k)}}$=0. [Hint:Use part a with suitable values of x]
Have solved part (a) - need help with part (b).