How do I evaluate this sum :$$\displaystyle\sum_{n=0}^{\infty} \frac{\sin(n!)}{\cos(n!)}$$
Note : I used many criterions of convergence to show if it converges but i
didn't up.
Thank you for any help .
Edit: Also asked at MathOverflow
How do I evaluate this sum :$$\displaystyle\sum_{n=0}^{\infty} \frac{\sin(n!)}{\cos(n!)}$$
Note : I used many criterions of convergence to show if it converges but i
didn't up.
Thank you for any help .
Edit: Also asked at MathOverflow