For a direct computation, note that your surface is the union of the five surfaces parameterized by
\begin{align*}
\mathbf r(x,y)&=\left\langle x,y,\sqrt{9-x^2}\right\rangle & (x,y)&\in[0,3]\times[0,6] \\
\mathbf s(x,y) &= \langle x,y,0\rangle & (x,y)&\in[0,3]\times[0,6] \\
\mathbf t(y,z) &=\langle0,y,z\rangle & (y,z)&\in[0,6]\times[0,3] \\
\mathbf u(r,\theta) &= \langle r\cos\theta,0,r\sin\theta\rangle & (r,\theta)&\in[0,3]\times[0,\pi/2] \\
\mathbf v(r,\theta) &= \langle r\cos\theta,6,r\sin\theta\rangle & (r,\theta)&\in[0,3]\times[0,\pi/2]
\end{align*}
Our computation is then
\begin{align*}
\iint_S(\mathbf F\cdot\mathbf n)\,dS
&= \int_0^6\int_0^3\mathbf F\bigl(\mathbf r(x,y)\bigr)\cdot(\mathbf r_x\times\mathbf r_y)\,dx\,dy \\
&\qquad+\int_0^6\int_0^3\mathbf F\bigl(\mathbf s(x,y)\bigr)\cdot(\mathbf s_y\times\mathbf s_x)\,dx\,dy \\
&\qquad\qquad+\int_0^3\int_0^6\mathbf F\bigl(\mathbf t(y,z)\bigr)\cdot(\mathbf t_z\times\mathbf t_y)\,dy\,dz \\
&\qquad\qquad\qquad+\int_0^{\pi/2}\int_0^3\mathbf F\bigl(\mathbf u(r,\theta)\bigr)\cdot(\mathbf u_r\times\mathbf u_\theta)\,dr\,d\theta \\
&\qquad\qquad\qquad\qquad+\int_0^{\pi/2}\int_0^3\mathbf F\bigl(\mathbf v(r,\theta)\bigr)\cdot(\mathbf v_\theta\times\mathbf u_r)\,dr\,d\theta \\
&= \int_0^6\int_0^3\left\langle6\sqrt{9-x^2},2\,x+y,-x\right\rangle\cdot\left\langle \frac{x}{\sqrt{9-x^2}},0,1\right\rangle\,dx\,dy \\
&\qquad+\int_0^6\int_0^3\langle0,2\,x+y,-x\rangle\cdot\langle0,0,-1\rangle\,dx\,dy \\
&\qquad\qquad+\int_0^3\int_0^6\langle6\,z,y,0\rangle\cdot\langle-1,0,0\rangle\,dy\,dz \\
&\qquad\qquad\qquad+\int_0^{\pi/2}\int_0^{3}\langle6r\sin\theta,2r\cos\theta,-r\cos\theta\rangle\cdot\langle0,-r,0\rangle\,dr\,d\theta \\
&\qquad\qquad\qquad\qquad+\int_0^{\pi/2}\int_0^{3}\langle6r\sin\theta,2r\cos\theta+6,-r\cos\theta\rangle\cdot\langle0,r,0\rangle\,dr\,d\theta \\
&= \underbrace{5\int_0^6\int_0^3x\,dx\,dy+\int_0^6\int_0^3x\,dx\,dy-6\int_0^3\int_0^6z\,dy\,dz}_{=0} \\
&\qquad+\int_0^{\pi/2}\int_0^3-2r^2\cos\theta\,dr\,d\theta+\int_0^{\pi/2}\int_0^3(2 r^2\cos\theta+6r)\,dr\,d\theta \\
&= 6\int_0^{\pi/2}\int_0^3r\,dr\,d\theta \\
&= 6\left(\frac{9}{2}\right)\int_0^{\pi/2}d\theta \\
&= 6\left(\frac{9}{2}\right)\left(\frac{\pi}{2}\right) \\
&=\frac{27}{2}\pi
\end{align*}
The problem is considerably easier if we use the divergence theorem. We are asked to compute
$$
\iint_{S}(\mathbf F\cdot\mathbf n)\,dS
$$
where $\mathbf F(x,y,z)=\langle 6\,z,2\,x+y,-x\rangle$ and $S$ is the quarter cylinder you describe. The divergence theorem states that
$$
\iint_{S}(\mathbf F\cdot\mathbf n)\,dS=\iiint_T(\nabla\cdot\mathbf F)\,dV
$$
where $T$ is the solid enclosed by $S$ and $\displaystyle\nabla=\left\langle\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}\right\rangle$. Our computation is then
\begin{align*}
\iint_{S}(\mathbf F\cdot\mathbf n)\,dS
&=\iiint_T(\nabla\cdot\mathbf F)\,dV \\
&=\iiint_T\left\langle\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}\right\rangle\cdot\langle 6\,z,2\,x+y,-x\rangle\,dV \\
&= \iiint_T(0+1+0)\,dV \\
&= \iiint_TdV \\
&= \text{volume of }T \\
&= \frac{1}{4}\pi\cdot 3^2\cdot 6 \\
&= \frac{27}{2}\pi
\end{align*}
This verifies that our direct computation was, indeed, correct.