3 steps of Euclid's algorithm will get you there:
$$\begin{align} & \gcd(\underbrace{11\cdots11}_{100},\underbrace{11\cdots11}_{60})
\\ ={}& \gcd(\underbrace{11\cdots11}_{40},\underbrace{11\cdots11}_{60})
\\ ={}& \gcd(\underbrace{11\cdots11}_{40},\underbrace{11\cdots11}_{20})
\\ ={}& \gcd(\underbrace{11\cdots11}_{20},\underbrace{11\cdots11}_{20})
= \underbrace{11\cdots11}_{20} \end{align} $$
First subtract $10^{40}$ times the right number from the left, then $10^{20}$ times the left number from the right, then $10^{20}$ times the right number from the left again.
This example generalizes to seeing that
$$ \gcd(\underbrace{11\cdots11}_{a\text{ ones}},\underbrace{11\cdots11}_{b\text{ ones}}) = \underbrace{11\cdots11}_{\gcd(a,b)\text{ ones}} $$