How to solve the following sum?
$$\sum_{n=0}^k (-1)^n (1/2)^n$$
HINT:
Using Exponent Combination Law $a^mb^m=(ab)^m$ for real $a>0,b>0,m$
$\displaystyle\left(\dfrac12\right)^n=\left(-\dfrac12\right)^n$ $\displaystyle\implies\sum_{n=0}^k (-1)^n \left(\dfrac12\right)^n =\sum_{n=0}^k\left(-\dfrac12\right)^n$
which is a Geometric Series with common ratio $=-\dfrac12$
use the geometric serie for $|x|<1$ $$\sum_{n=0}^{k }x^n=1+x+x^2+x^3+....=\frac{1-x^{k+1}}{1-x}$$
then use $x=-1/2$
We have,
$s_{n}=\sum_{k=0} ^n (-\frac{1}{2})^n$
$s_0=1$
$s_1=\frac{1}{2}$
$s_2=\frac{3}{4}$
$s_3=\frac{5}{8}$
$s_4=\frac{11}{16}$
$s_5=\frac{21}{32}$
$s_{6}=\frac{43}{64}$
We can see the numerator is part of the Jacobsthal sequence.
We can later conclude,
$s_{n}=\frac{1}{3} [(-\frac{1}{2})^n +2]$
Hope this helps.