$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[5px,#ffd]{\lim_{x \to \infty}\,\,{\Gamma\pars{x + 1} \over \Gamma\pars{x + 1 + 1/x^{2}}}} =
\lim_{x \to \infty}\,\,{x! \over \pars{x + 1/x^{2}}!}
\\[5mm] = &\
\lim_{x \to \infty}\,\,{\root{2\pi}x^{x + 1/2}\,\,\expo{-x} \over \root{2\pi}\pars{x + 1/x^{2}}^{x\ +\ 1/x^{2}\ + 1/2}
\,\,\,\,\expo{-x - 1/x^{2}}\,\,}
\\[5mm] = &\
\lim_{x \to \infty}\,\,{x^{x + 1/2} \over
x^{x\ +\ 1/x^{2}\ + 1/2}\,\,\,
\bracks{\pars{1 + 1/x^{3}}^{x^{3}}}^{1/x^{2}\ +\ 1/x^{5}\ + 1/\pars{2x^{3}}}
\,\,\,\,}\,\expo{1/x^{2}}
\\[5mm] = &
\lim_{x \to \infty}x^{-1/x^{2}} =
\exp\pars{-\lim_{x \to \infty}{\ln\pars{x} \over x^{2}}} =
\exp\pars{-\lim_{x \to \infty}{1/x \over 2x}}
\\[5mm] = &
\bbx{1} \\ &
\end{align}