$$1+ \frac{1}{8} + \frac{1}{27} + \frac{1}{64} + \frac{1}{125} + \frac{1}{216} + \frac{1}{343} + \frac{1}{512} + \frac{1}{729} + \cdots < 1+ \frac{1}{8} + \frac{1}{8} + \frac{1}{64} + \frac{1}{64} + \frac{1}{64} + \frac{1}{64} + \frac{1}{512}+\frac{1}{512}+\cdots$$
In fact, this gets you $$\mathrm{sum} < \color{red}{1 \frac{1}{3} \approx 1.333}$$
And one could easily improve it by changing the first $\frac{1}{8}$ to $\frac{1}{27}$, this is the largest overestimation. This actually gives:
$$\mathrm{sum} < \color{red}{1 \frac{53}{216} \approx 1.245}$$
By summing the first 31 terms and then using above technique, we can reach
$$\mathrm{sum} < \color{red}{1.202205}$$