1

I wish to show that $$ \det \begin{pmatrix} x & a & a & a\\ a & x & a & a\\ a & a & x & a\\ a & a & a & x \end{pmatrix}=(x-a)^3(x+3a).$$ Obviously, I could expand it out and try to notice some factors as I go, but that seems rather tedious. Is there a particularly fast way of demonstrating the above identity?

Zev Chonoles
  • 129,973

1 Answers1

0

$$ \det \begin{pmatrix} x & a & a & a\\ a & x & a & a\\ a & a & x & a\\ a & a & a & x \end{pmatrix}~\quad R_1\to R_1-R_2~\&~ R_2\to R_2-R_3 ~\&~ R_3\to R_3-R_4\\$$ $$==- \det \begin{pmatrix} x-a & a-x & 0 & 0\\ 0 & x-a & a-x & 0\\ 0 & 0 & x-a & a-x\\ a & a & a & x \end{pmatrix}$$ $$=-(x-a)^3\det \begin{pmatrix} 1 & -1 & 0 & 0\\ 0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ a & a & a & x \end{pmatrix}$$

Now if you expand this then you'll get answer