I'm trying to find a proof of this:
The group $\langle\mathbb{Z}_n,\oplus\rangle$ is cyclic for every $n$, where $1$ is a generator. The generators of the group $\langle\mathbb{Z}_n,\oplus\rangle$ are all $g \in \mathbb{Z}_n $ for which $\gcd(g,n)=1$, as the reader can prove as an exercise.
It is perfectly clear that $1$ generates all $\mathbb{Z}_n$, but I can't get myself to understand the second part or find a way to prove it. Thanks.