I know how to find for which $n$ $\phi(n)=n/2$ or $\phi(n)=n/3$, my method for finding those was simply to find primes $p$ that satisfy $\Pi_p$$_|$$_n$$1-1/p$ $ = 1/2$ or $1/3$.
However, I don't know how to find $\Pi_p$$_|$$_n$$1-1/p = n/6$. Intuitively it seems that if I combine results for both $\phi(n) = n/2$ and $\phi(n) = n/3$ I'll get $\phi(n) = n/6$ but it does not work, cause I get number of the form $2^a3^b$ which gives $\phi(n) = n/3$ again.
Is there a way to find $n$ for which $\phi(n)=n/6$? Or do such numbers exist at all?