how to compute $\displaystyle I=\int\limits_{0}^{\pi/2}\frac{x}{\tan x}\,dx$
i made $f(x)=\frac{x}{\tan x}$ and then i see that
$$\begin{align} \lim_{x\to0}f(x)&=\lim_{x\to0}\frac{x}{\tan x}\\ &=\lim_{x\to0}\frac{x\cos x}{\sin x}\\ &=\lim_{x\to0}\frac{\cos x}{\frac{\sin x}{x}}\\ &=\frac{\lim\limits_{x\to0}\cos x}{\lim\limits_{x\to0}\frac{\sin x}{x}}=1\\ \lim_{x\to\pi/2}f(x)&=\lim_{x\to\pi/2}\frac{x}{\tan x}=0 \end{align}$$
we have that $f(x)$ is decreasing into $(0,\pi/2)$ and $f(x)\in(0,1)$ for $x\in(0,\pi/2)$, then i think that
$$0<\displaystyle \int\limits_{0}^{\pi/2}\frac{xdx}{\tan x}<\frac{\pi}{2}$$
i think the primitive can not be expressed in terms of elementary functions, then i think that other method like residue theorem or power series would be used, but i dont know how to use any of these, how i compute this integral?