We may compute the Fourier series of $\sqrt{\left|\tan\frac{x}{2}\right|}$ and $ \log\cos\frac{x}{2}$ over $I=(-\pi,\pi)$, for first.
We have:
$$ \frac{1}{\pi}\int_{0}^{\pi}\sqrt{\left|\tan\frac{x}{2}\right|}\,dx = \sqrt{2},$$
$$ \frac{1}{\pi}\int_{-\pi}^{\pi}\cos(2mx)\sqrt{\left|\tan\frac{x}{2}\right|}\,dx=-\frac{1}{\pi}\int_{-\pi}^{\pi}\cos((2m+1)x)\sqrt{\left|\tan\frac{x}{2}\right|}\,dx=\frac{\sqrt{2}}{4^n}\binom{2m}{m}$$
from which:
$$\sqrt{\left|\tan\frac{x}{2}\right|} = \sum_{m\geq 0}\frac{\sqrt{2}}{4^m}\binom{2m}{m}\left[\cos(2mx)-\cos((2m+1)x)\right]\tag{1}$$
follows. On the other hand:
$$ \frac{1}{2\pi}\int_{-\pi}^{\pi}\log\cos\frac{x}{2}\,dx = -\log 2, $$
$$ \frac{1}{\pi}\int_{-\pi}^{\pi}\log\left(\cos\frac{x}{2}\right)\cos(mx)\,dx = \frac{(-1)^{m+1}}{m},$$
hence:
$$ \log\cos\frac{x}{2}=-\log 2-\sum_{m=1}^{+\infty}\frac{(-1)^{m}}{m}\cos(mx)\tag{2} $$
so by using
$$ \int_{0}^{\pi} x\cos(nx)\cos(mx)\,dx = \frac{(-1)^{m+n}-1}{2}\left(\frac{1}{(m-n)^2}+\frac{1}{(m+n)^2}\right),\tag{3}$$
$$ \int_{0}^{\pi} x\cos^2(nx)\,dx = \frac{\pi^2}{4}\tag{4}$$
we get that our integral equals a rather complicated series.
Update: I managed to prove, through differentiation under the integral sign and the residue theorem, that our integral depends only on the values of $\psi(z)$ and $\psi'(z)$ at $z=\frac{1}{4}$ (see this related question). Both values are not too difficult to compute, and $\psi'\left(\frac{1}{4}\right)=\pi^2+8K$ where $K$ is the Catalan constant.