Let $f\in$$L^1(\mathbb{R})$ and let $p>0$ . Prove that for almost every $x\in$$\mathbb{R}$ , $\lim_{n\to\infty}n^{-p}f(nx)=0$.
Asked
Active
Viewed 206 times
0
-
Consider the $L^1$-norm of your function. – Urgje Jun 10 '15 at 10:10
1 Answers
2
Hint: If $f_n$ is a sequence of measurable functions on $(X,\mu)$ and
$$ \sum_{n=1}^{\infty}\int_X |f_n|\,d\mu < \infty,$$
then $\lim_{n\to\infty} f_n(x)=0$ for $\mu$-a.e. $x\in X.$ Why?

zhw.
- 105,693