I thought it might be instuctive to present a rigorous and direct approach to determining the Fourier Transform of $\text{PV}\frac1x$. To that end, we now proceed.
First, we define the Fourier Transform for an $L^1$ function, $f$ as
$$\mathscr{F}\{f\}(k)=\int_{-\infty}^\infty f(x) e^{ikx}\,dx$$
Next, we define the Principal Value of the distribution, $d(x)=\left(\text{PV}\frac1x\right)$ as
$$\langle d,\phi\rangle= \lim_{\delta\to 0^+}\int_{|x|\ge \delta}\frac{\phi(x)}{x}\,dx$$
where $\phi\in \mathbb{S}$.
Therefore, we have for any $\phi\in \mathbb{S}$
$$\begin{align}
\langle \mathscr{F}\{d\},\phi\rangle &=\langle d, \mathscr{F}\{\phi\}\rangle\\\\
&=\lim_{\delta\to 0^+}\int_{|x|\ge\delta}\frac1x \int_{-\infty}^\infty \phi(k) e^{ikx}\,dk\,dx\\\\
&=\lim_{\delta\to 0^+} \lim_{L\to\infty}\int_{-\infty}^\infty \phi(k) \int_{\delta\le |x|\le L}\frac{e^{ikx}}{x}\,dx\,dk\\\\
&=\lim_{\delta\to 0^+} \lim_{L\to\infty}\int_{-\infty}^\infty \phi(k) \int_{\delta\le |x|\le L} \frac{i\sin(kx)}{x}\,dx\,dk
\end{align}$$
Note that $\left| \int_{\delta\le |x|\le L} \frac{\sin(kx)}{x}\,dx\right|\le 4$ for all $0\le \delta<L$ and all $k$. Hence, applying the dominated convergence theorem we have
$$\begin{align}
\langle \mathscr{F}\{d\},\phi\rangle&=\lim_{\delta\to 0^+} \lim_{L\to\infty}\int_{-\infty}^\infty \phi(k) \int_{\delta\le |x|\le L} \frac{i\sin(kx)}{x}\,dx\,dk\\\\
&=\int_{-\infty}^\infty \phi(k) \lim_{\delta\to 0^+} \lim_{L\to\infty}\int_{\delta\le |x|\le L} \frac{i\sin(kx)}{x}\,dx\,dk\\\\
&=\int_{-\infty}^\infty \phi(k) \left(i\pi \text{sgn}(k)\right)
\end{align}$$
We conclude, therefore, that the Fourier Transform of the tempered distribution $d(x) = \left(\text{PV}\frac1x\right)$ is
$$\mathscr{F}\{d\}(k)=i\pi \text{sgn}(k)$$
And we are done!