In attempting to evaluate $ \int_{0}^{\infty} [\text{Ei}(-x)]^{4} \, dx$ (which can be evaluated in terms of polylogarithm values), I determined that $$ \begin{align} \int_{0}^{\infty} [\text{Ei}(-x)]^{4} \, dx &= 8 \int_{2}^{\infty} \frac{\log(2+x) \log(x-1)}{x(1+x)} \, dx \\ &=8 \Bigg(\int_{0}^{1/2} \frac{\log(1+2x) \log(1-x)}{1+x} \, dx - \int_{0}^{1/2} \frac{\log(1+2x) \log(x)}{1+x} \, dx \\ &- \int_{0}^{1/2} \frac{\log (x) \log(1-x)}{1+x} \, dx + \int_{0}^{1/2} \frac{\log^{2}(x)}{1+x} \, dx \Bigg). \end{align}$$
I will show this at the end of my post.
I can evaluate the 3rd and 4th integrals, but I'm having difficulties with the first two integrals.
$$ \begin{align} \int_{0}^{1/2} \frac{\log(1+2x)\log(x)}{1+x} \, dx &= \int_{0}^{1/2} \log(x) \sum_{n=1}^{\infty} (-1)^{n+1} x^{n} \sum_{k=1}^{n} \frac{2^{k}}{k} \, dx \\ &= \sum_{n=1}^{\infty} (-1)^{n+1} \sum_{k=1}^{n}\frac{2^{k}}{k} \int_{0}^{1/2} x^{n} \log(x) \, dx \\ &=-\sum_{n=1}^{\infty} \left( -\frac{1}{2} \right)^{n+1} \left[\frac{\log 2}{n+1} + \frac{1}{(n+1)^{2}} \right] \sum_{k=1}^{n}\frac{2^{k}}{k} \end{align}$$
This approach doesn't seem particularly useful.
Approaching the other integral in the same manner leads to even more of a mess:
$$ \begin{align} \int_{0}^{1/2} \frac{\log(1+2x)\log(1-x)}{1+x} \, dx &= \sum_{n=1}^{\infty} (-1)^{n+1} \sum_{k=1}^{n}\frac{2^{k}}{k} \int_{0}^{1/2} x^{n} \log(1-x) \, dx \\& = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1} \left[\log (2) -\left(\frac{1}{2}\right)^{n+1} \log(2) - \sum_{m=1}^{n-1} \frac{(\frac{1}{2})^{m}}{m}\right]\sum_{k=1}^{n}\frac{2^{k}}{k} \end{align}$$
$$ \begin{align} \int_{0}^{\infty} [\text{Ei}(-x)]^{4} \, dx &= -4 \int_{0}^{\infty} [\text{Ei}(-x)]^{3} e^{-x} \, dx \tag{1} \\ &= 4 \int_{0}^{\infty} \int_{1}^{\infty} \int_{1}^{\infty} \int_{1}^{\infty} \frac{1}{wyz} e^{-(w+y+z+1)x} \, dw \, dy \, dz \,dx \\& =4 \int_{1}^{\infty} \int_{1}^{\infty} \int_{1}^{\infty} \frac{1}{wyz} \int_{0}^{\infty} e^{-(w+y+z+1)x} \, dx \, dw \, dy \, dz \\ &= 4 \int_{1}^{\infty} \int_{1}^{\infty} \int_{1}^{\infty} \frac{1}{wyz} \frac{1}{w+y+z+1} \, dw \, dy \, dz \\ &= 4 \int_{1}^{\infty} \int_{1}^{\infty} \int_{1}^{\infty} \frac{1}{yz} \frac{1}{y+z+1} \left(\frac{1}{w} - \frac{1}{w+y+z+1} \right) \, dw \, dy \, dz \\ &= 4 \int_{1}^{\infty} \int_{1}^{\infty} \frac{1}{yz} \frac{1}{y+z+1} \log(2+y+z) \, dy \, dz \\ &= 8 \int_{1}^{\infty} \int_{1}^{z} \frac{1}{yz} \frac{1}{y+z+1} \log(2+y+z) \, dy \, dz \\ &= 8 \int_{2}^{\infty} \int_{u-1}^{u^{2}/4} \frac{1}{v} \frac{1}{u+1} \log(2+u) \frac{dv \, du}{\sqrt{u^{2}-4v}} \tag{2} \\& =16 \int_{2}^{\infty} \frac{\log(2+u)}{u+1} \int_{0}^{u-2} \frac{1}{u^{2}-t^{2}} \, dt \, du \tag{3} \\& =16 \int_{2}^{\infty} \frac{\log(2+u)}{u+1} \frac{1}{u} \text{arctanh} \left( \frac{u-2}{2}\right) \, du \\ &= 8 \int_{2}^{\infty} \frac{\log(2+u) \log(u-1)}{u(1+u)} \, du \end{align}$$
$(1)$ Integrate by parts.
$(2)$ Make the change of variables $u=y+z$, $v=yz$.
$(3)$ Make the substitution $t^{2} = u^{2}-4v$.
EDIT:
Using M.N.C.E.'s suggestion in the comments, both integrals can be expressed in terms of integrals that can be evaluated using integration by parts.
I posted an answer below.