9

In general, is $\sum_i \sum_j f(i,j) = \sum_j\sum_i f(i,j)$ ?

With $f(i,j)$ I mean some expression that depends on $i$ and $j$.

If yes, how could I prove that?

Christian
  • 1,781

1 Answers1

7

$$\sum_i\sum_jf(i,j) = \sum_i( f(i,j_1) + f(i,j_2)+...+f(i,j_n)) =$$$$ \sum_i f(i,j_1)+\sum_if(i,j_2)+...+\sum_i f(i,j_n)=$$ $$[f(i_1,j_1)+f(i_1,j_2)+...+f(i_1,j_n)]+[f(i_2,j_1)+f(i_2,j_2)+...+f(i_2,j_n)]+...+[f(i_m,j_1)+f(i_m,j_2)+...+f(i_m,j_n)] =$$ $$ [f(i_1,j_1)+f(i_2,j_1)+...+f(i_m,j_1)]+[f(i_1,j_2)+f(i_2,j_2)+...+f(i_m,j_2)]+...+[f(i_1,j_n)+f(i_2,j_n)+...+f(i_m,j_n)] =$$ $$ \sum_j f(i_1,j)+\sum_j f(i_2,j)+...+\sum_j f(i_m,j) = \sum_j\sum_if(i,j).\square$$

Rayhunter
  • 837