How to prove the following: $$\int^{1}_{0}x^{-x}dx=\sum^{\infty}_{n=1}\frac{1}{n^n}$$
I know that:
$$x^{-x}=e^{-x\ln(x)}=\sum^{\infty}_{n=0}\frac{(-1)^n(x\ln(x))^n}{n!}$$
How to prove the following: $$\int^{1}_{0}x^{-x}dx=\sum^{\infty}_{n=1}\frac{1}{n^n}$$
I know that:
$$x^{-x}=e^{-x\ln(x)}=\sum^{\infty}_{n=0}\frac{(-1)^n(x\ln(x))^n}{n!}$$