Evaluate
$$\displaystyle \int _{ 0 }^{ \pi /2 }{ \log(\cos(x))\log(\sin(x)) \ dx }$$
Consider : $$\displaystyle F(m,n)=\int _{ 0 }^{ \pi /2 }{ \sin ^{ 2m-1 }{ x } \cos ^{ 2n-1 }{ x } dx } $$
$$\sin^{2}x = t$$ :
$$ \displaystyle F(m,n) =\frac{1}{2} \int _{ 0 }^{ 1 }{ { t }^{ m-1 }{ (1-t) }^{ n-1 }dt }=\frac{\beta (m,n)}{2} $$
Where $\beta(m,n)$ is the beta function.
$$\displaystyle F(m,n) = \frac { \Gamma (m)\Gamma (n) }{2 \Gamma (m+n) } $$
Hence $$\displaystyle \frac { \Gamma (m)\Gamma (n) }{ \Gamma (m+n) } = 2\int _{ 0 }^{ \pi /2 }{ \sin ^{ 2m-1 }{ x } \cos ^{ 2n-1 }{ x } dx }$$
Differentiating with respect to $m$:
$$\displaystyle \frac { \Gamma (n) }{ ({ \Gamma (m+n)) }^{ 2 } } (\Gamma '(m)\Gamma (m+n)-\Gamma (m)\Gamma '(m+n)) = 4\int _{ 0 }^{ \pi /2 }{ log(sin(x))\sin ^{ 2m-1 }{ x } \cos ^{ 2n-1 }{ x } dx } $$
$$\displaystyle \frac { \Gamma (m)\Gamma (n) }{ \Gamma (m+n) } (\psi (m)-\psi (m+n))=4\int _{ 0 }^{ \pi /2 }{ log(sin(x))\sin ^{ 2m-1 }{ x } \cos ^{ 2n-1 }{ x } dx }$$
$$\psi(x)$$ is the digamma function.
Differentiate with respect to $n$ :
$$\displaystyle \frac { \Gamma (m)\Gamma (n) }{ \Gamma (m+n) } (((\psi (m)-\psi (m+n))(\psi (n)-\psi (m+n))-\psi '(m+n))$$
$$\displaystyle =8\int _{ 0 }^{ \pi /2 }{ log(sin(x))log(cos(x))\sin ^{ 2m-1 }{ x } \cos ^{ 2n-1 }{ x } dx } $$
$m=n=\dfrac{1}{2}$:
$$\displaystyle \frac { { \Gamma }^{ 2 }(1/2) }{ \Gamma (1) } ({ (\psi (1/2)-\psi (1)) }^{ 2 }-\psi '(1))$$
$$\displaystyle =8\int _{ 0 }^{ \pi /2 }{ log(cos(x))log(sin(x))dx } $$
$$\displaystyle \Gamma (1/2)=\sqrt { \pi } ,\Gamma (1)=1,\psi (1/2)=-\gamma -log(4),\psi (1)=-\gamma ,\psi '(1)=\frac { { \pi }^{ 2 } }{ 6 } $$
Any other method to do this?