Let $R$ be a commutative integral domain, $I,J,K$ three ideals of $R$ with $I\neq (0)$ being finitely generated. Then does $IJ=IK$ imply $J=K$?
With Nakayama lemma, I can prove it if one of $J$ and $K$ equals to $R$. And I also know it holds when $R$ is a Prüfer domain or $I$ is singly generated.