I would like to share a trigonometry question here. Wonder is there another way to solve it or not.
$\sin(2x)-\cos(2x)-\sin(x)+\cos(x)=0$
$2\cos(x)\sin(x)-(1-2\sin^2(x))-\sin(x)+\cos(x)=0$
$2\cos(x)\sin(x)-1+2\sin^2(x)-\sin(x)+\cos(x)=0$
$2\sin^2(x)+2\cos(x)\sin(x)-\sin(x)+\cos(x)-1=0$
$(2\sin(x)+1)(\sin(x)+\cos(x)-1)=0$
So, we have $$2\sin(x)+1=0 \space\text{and}\sin(x)+\cos(x)-1=0$$
$2\sin(x)+1=0$
$\sin(x)=-\frac{1}{2}$
$x=\frac{7\pi}{6}+2\pi n,\frac{11\pi}{6}+2\pi n$
$\sin(x)+\cos(x)-1=0$ which answered in my yesterday post $\cos x+\sin x=1$
and get $x=2n\pi,2n\pi+\frac{\pi}{2}$
Combine all the solutions, $$x=2\pi n,x=\frac{7\pi}{6}+2\pi n,x=2\pi n+\frac{\pi}{2}, x=\frac{11\pi}{6}+2\pi n$$