Let $f$ be a continuously differentiable function on $\mathbb R$. Suppose that $L=\lim\limits_{x\to \infty}(f(x)+f^{'}(x))$ exists. If $0<L<\infty$, and if $\lim\limits_{x\to \infty} f^{'}(x)$ exists then, can it be proved that $\lim\limits_{x\to \infty} f^{'}(x)=0$?
Let $(x_n)$ be a sequence diverges to $\infty$. Then $f(x_n)+f^{'}(x_n)\to L$. After that I could not proceed. Please help!