I'll outline an answer that does not rely on modular arithmetic; it is very similar to Chou's answer but with the details more spelled out.
For $n\geq 1$, let $S(n)$ denote the statement
$$
S(n) : 7\mid(6^{2n+1}+1)\Longleftrightarrow 6^{2n+1}+1=7m, m\in\mathbb{Z}.
$$
Base case ($n=1$): $S(1)$ says that $7\mid(6^{2(1)+1}+1)$, and this is true since $6^3+1=217$ and $217=7\cdot 31$.
Inductive step: Fix some $k\geq 1$ and assume that $S(k)$ is true where
$$
S(k) : 7\mid(6^{2k+1}+1)\Longleftrightarrow 6^{2k+1}+1=7\ell, \ell\in\mathbb{Z}.
$$
To be proved is that $S(k+1)$ follows where
$$
S(k+1) : 7\mid(6^{2k+3}+1)\Longleftrightarrow 6^{2k+3}+1=7\eta, \eta\in\mathbb{Z}.
$$
Beginning with the left-hand side of $S(k+1)$,
\begin{align}
6^{2k+3}+1 &= 6^2\cdot6^{2k+1}+1\tag{by definition}\\[0.5em]
&= 36(6^{2k+1}+1)-35\tag{rearrange}\\[0.5em]
&= 36(7\ell)-7\cdot 5\tag{by $S(k)$, the ind. hyp.}\\[0.5em]
&= 7(36\ell-5)\tag{factor out $7$}\\[0.5em]
&= 7\eta,\tag{$\eta=36\ell-5; \eta\in\mathbb{Z}$}
\end{align}
we end up at the right-hand side of $S(k+1)$, completing the inductive step.
Thus, by mathematical induction, the statement $S(n)$ is true for all $n\geq 1$. $\blacksquare$