Here's a more elementary way of seeing it from the derivative of $\sec{\theta}$:
$\frac{\sec(\theta+\delta)-\sec\theta}{\delta}=\frac{\frac{1}{\cos(\theta+\delta)}-\frac{1}{\cos\theta}}{\delta}=\frac{cos\theta-\cos(\theta+\delta)}{\delta\cos\theta\cos(\theta+\delta)}$,
So
$\frac{d}{d\theta}(\sec{\theta})=\lim\limits_{\delta\rightarrow 0}\frac{\sec(\theta+\delta)-\sec\theta}{\delta}=\lim\limits_{\delta\rightarrow 0}-\frac{\cos(\theta+\delta)-\cos\theta}{\delta}\frac{1}{\cos\theta}\frac{1}{\cos(\theta+\delta)}$.
The first term is the (opposite of) the derivative of $\cos\theta$; the other two simply go to $\cos\theta$.
Since $\frac{d}{d\theta}(\cos\theta)=-\sin\theta$, we get the result.
For a nice geometric proof of the derivative of $\sin\theta$ which can easily be adjusted to prove the cosine derivative, see here.