Let $$A= \begin{pmatrix} 5 & -3 & 0 \\ -3 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$ and $c$ be a real no. such that $A^2x=cAx$ for some non-zero vector $x$. Then the number of distinct real values of $c$ is
a) $0$ b) $1$ c) $2$ a) $3$
$A^2x=cAx$ $\to$ $A.Ax=c.Ax$ $\to $ $c$ is eigenvalue of $A$.
Eigenvalue of $A$ are $8,2,2$. So c) becomes true...
Is this correct?