$$\begin{align} \lim_{x \to a} f(x) &= \lim_{x\to a}\frac{1}{\sin x - \sin a} - \frac{1}{(x - a)\cos a} \\= \ & \sec a\lim_{x\to a}\dfrac{(x-a)\cos a + \sin a - \sin x}{(x-a) (\sin x - \sin a)}\\= \ & \sec a\lim_{x\to a}\dfrac{(x-a)\cos a + \sin a - \sin x}{(x-a) (\sin x - \sin a)} \end{align}$$
Let $ y = x - a$; Since $\sin x - \sin a = 2\sin \left(\dfrac{x-a}{2}\right) \cos \left(\dfrac{x+a}{2}\right)$
$$\begin{align}\sec a\lim_{x\to a}\dfrac{(x-a)\cos a + \sin a - \sin x}{(x-a) (\sin x - \sin a)} & = \dfrac{\sec^2 a}{2}\lim_{y \to 0} \dfrac{(y - \sin y) \cos a + \sin a (1 - \cos y)}{y \sin(y/2)} \\=\ & \sec^2 a\lim_{y \to 0} \dfrac{(y - \sin y) \cos a}{y^2} + \sec^2 a\lim_{y\to0 }\dfrac{\sin a (1 - \cos y)}{y^2 }. \end{align}$$
It is common knowledge that $\lim_{y \to 0} \dfrac{y -\sin y}{y^2} = 0$ and $\lim_{y\to0 }\dfrac{ 1 - \cos y}{y^2 } = \dfrac12$ can be proved only using standard limits(I omitted the proof for the sake of brevity).
Therefore $$\bbox[5px,border-style: solid; border-color:black; border-width: 2px]{\lim_{x \to a} f(x) = \dfrac12 \sec a \tan a.} \tag 1$$
$$f'(x) = \dfrac{1}{(x-a)\cos a} - \dfrac{\cos x}{(\sin x - \sin a)^2}$$
$$\begin{align}\lim_{x \to a} f'(x) = & \sec a \lim_{x\to a}\dfrac{(\sin x -\sin a)^2 - (x-a)^2\cos x \cos a }{(x-a)^2 (\sin x - \sin a)^2} \\= \ & \dfrac{\sec^3 a}{4} \lim_{x\to a}\dfrac{(\sin x -\sin a)^2 - (x-a)^2\cos x \cos a }{(x-a)^2 \sin^2\left(\dfrac{x-a}{2}\right)} \end{align}$$
Letting $ y = x - a$ the above limit becomes,
$$\begin{align}\sec^3 a\lim_{y \to 0} \dfrac{(\sin(y + a ) - \sin a)^2 - y^2 \cos (y +a )\cos a}{y^4}. \end{align}$$
Expanding the numerator completely in terms of $\sin a, \cos a, \sin y $ and $\cos y$, we get
$$\begin{align}\sec^3 a \lim_{y \to 0} \dfrac{\sin^2 y \cos^2 a + \cos^2 y \sin^2 a + \sin^2 a + 2\sin a \cos a \sin y \cos y \\- 2 \sin a \cos a \sin y - 2\sin^2 a \cos y - y^2 \cos y \cos a^2 + y^2 \sin y \sin a \cos a}{y^4}\end{align}$$
Collecting terms simplifies this to
$$\sec^3 a\lim_{y\to 0} \dfrac{\cos^2 a(\sin^2 y - y^2 \cos y) + \sin a \cos a \sin y (2 \cos y - 2+ y^2) + \sin^2 a (\cos y - 1)^2}{y^4}$$
- Solving $\lim_{y \to 0} \dfrac{\sin^2 y - y^2 \cos y}{y^4}$ :
$$\begin{align} \lim_{y \to 0} \dfrac{\sin^2 y - y^2 \cos y}{y^4} =& \lim_{y \to 0} \dfrac{\sin^2 y - y^2 }{y^4}+\lim_{y \to 0}\dfrac{1- \cos y}{y^2} \\= \ &\lim_{y \to 0} \left(\dfrac{\sin y - y }{y^3}\right)\left(\dfrac{\sin y + y }{y}\right)+\lim_{y \to 0}\dfrac{1- \cos y}{y^2}\end{align}$$
Using $\lim_{y \to 0} \dfrac{\sin y - y}{y^3} = \dfrac{-1}{6}$(proved here using only standard limits) and couple other familiar limits, we get the limit as $\dfrac 16$.
- Solving $\lim_{y \to 0} \sin y\dfrac{(2 \cos y - 2 + y^2)}{y^4}$:
$$\begin{align}\lim_{y \to 0} \sin y\dfrac{(2 \cos y - 2 + y^2)}{y^4}
= &\lim_{y \to 0} \dfrac{\sin y}{y}\left(\dfrac{ y^2 - 4\sin^2(y/2)}{y^3}\right) \\=\ &\lim_{y \to 0} \dfrac14\left(\dfrac{ y/2 - 2\sin(y/2)}{(y/2)^3}\right)(y + 2 \sin(y/2)) \\ = \ & \dfrac16 \cdot 0 = 0.
\end{align}$$
- Lastly we use our "common knowledge" to show to conclude that $\lim_{y \to 0} \dfrac{(\cos y - 1)^2}{y^4} = \dfrac14$.
Using above three bullet points we get $$\lim_{x\to a} f'(x) = \dfrac{\sin^2 a\sec^3 a}{4} + \dfrac{\sec a}{6} = \dfrac{\sec^3 a}{4} - \dfrac{\sec a}{12}.$$
Hence $$\bbox[5px,border-style: solid; border-color:black; border-width: 2px]{\lim_{x \to a} f'(x) = \dfrac{\sec^3 a}{4} - \dfrac{\sec a}{12}.} \tag 2$$
Using $(1)$ and $(2)$
$$\begin{align}\dfrac{d}{ da}\{\lim_{x \to a}f(x)\} - \lim_{x \to a}f'(x)=& \sec^3 a - \dfrac12\sec a - \dfrac{\sec^3 a}{4} + \dfrac{\sec a}{12}\\ = \ & \dfrac{3\sec^3 a}{4} - \dfrac{5 \sec a}{12}.\end{align}$$