Find the value of $$\cos ^2\theta+\cos^2 (\theta+1^{\circ})+\cos^2(\theta+2^{\circ})+...... +\cos^2(\theta+179^{\circ})$$
Attempt, $$\cos x=-\cos(180^\circ-x),\sin x=\cos(90^\circ-x),\cos x=\sin(90^\circ-x),\sin x=\sin(180^\circ-x)$$
$$\cos^2\theta+\cos^2(\theta+1^\circ)+\cos^2(\theta+ 2^\circ)+ \dots+\cos^2(\theta+179^\circ)=\cos^2\theta+\sum_{ n=1}^{179}\cos^2(\theta+n^\circ)$$
$$\cos^2(\theta+1^\circ)=\cos^2\theta\cos^21^\circ-2\cos\theta\cos1^\circ\sin\theta\sin1^\circ+\sin^2 \theta\sin^21^\circ$$
$$\cos^2(\theta+179^\circ)=\cos^2\theta\cos^2179^ \circ-2\cos\theta\cos179^\circ\sin\theta\sin179^\circ+ \sin^2\theta \sin^2179^\circ=\cos^2\theta\cos^2179^\circ+2\cos \theta\cos1^\circ \sin\theta\sin1^\circ+\sin^2 \theta\sin^2179^\circ$$
$$\cos^2\theta+\sum_{n=1}^{179}\cos^2(\theta+n^\circ )=\cos^2\theta+\sum_{n=1}^{179}(\cos^2\theta\cos^2 n^\circ+\sin^2\theta \sin^2n^\circ)$$
$$=\cos^2\theta+\sin^2\theta+2\sum_{n=1}^{89}(\cos^2 \theta\cos^2n^\circ+\sin^2\theta\sin^2n^\circ)$$
$$=1+2\sum_{n=1}^{89}\cos^2n^\circ=1+2\left(44+ \dfrac12 \right)=90$$