From $[A,[A,B]] = 0$, we decuce by induction that
$$ [A^k, B] = kA^{k-1}[A,B] \tag 1 $$
For $k = 0$, (1) is obviuos, if (1) holds for $k-1$, we have
\begin{align*}
[A^k, B] &= A^kB - BA^k\\
&= A^{k-1}AB - BAA^{k-1}\\
&= A^{k-1}[A,B] + A^{k-1}BA - BA^{k-1}A\\
&= A^{k-1}[A,B] + [A^{k-1},B]A\\
&= A^{k-1}[A,B] + (k-1)A^{k-2}[A,B]A\\
&= kA^{k-1}[A,B] \qquad \text{ as $[A,B]A = A[A,B]$}
\end{align*}
As $[\cdot, B]$, is linear, we have that for any polynomial $p$ we have
$$ [p(A), B] = p'(A)[A,B] $$
Now let $\mu_A$ denote the minimal polynomial of $A$, we will show by induction that
$$ \tag 2 \mu^{(k)}_A(A)[A,B]^{2^k- 1} = 0 $$
holds for any $k$.
For $k = 0$, we have nothing to show, as $\mu_A(A) = 0$ by definition of the minimal polynomial. Suppose $k \ge 1$ and (2) holds for $k-1$, then
\begin{align*}
0 &= [\mu^{(k-1)}_A(A)[A,B]^{2^{k-1}-1}, B]\\
&= [\mu^{(k-1)}_A(A), B][A,B]^{2^{k-1}-1} + \mu_A^{(k-1)}(A)[[A,B]^{2^k-1}, B]\\
&= \mu^{(k)}_A(A)[A,B]^{2^{k-1}} + \mu_A^{(k-1)}(A)\sum_{l=1}^{2^{k-1}-1}
[A,B]^{l-1} [[A,B],B][A,B]^{2^{k-1}-l}\\
\end{align*}
As $[A,[A,B]] = 0$, any polynomial in $A$ commutes with $[A,B]$. Multiplying the last equation with $[A,B]^{2^{k-1}-1}$ from the left, we have
\begin{align*}
0 &= [A,B]^{2^{k-1}-1}\mu^{(k)}_A(A)[A,B]^{2^{k-1}} + [A,B]^{2^{k-1}-1}\mu_A^{(k-1)}(A)\sum_{l=1}^{2^{k-1}-1}
[A,B]^{l-1} [[A,B],B][A,B]^{2^{k-1}-l}\\
&= \mu^{(k)}_A(A)[A,B]^{2^k-1} + \sum_{l=1}^{2^{k-1}-1}\mu_A^{(k-1)}(A)
[A,B]^{2^k-1 + l-1} [[A,B],B][A,B]^{2^{k-1}-l}\\
&= \mu^{(k)}_A(A)[A,B]^{2^k-1} \quad\text{by induction hypothesis}
\end{align*}
This proves (2).
Now, in (2), let $k = \deg \mu_A$ to get
$$ \tag 3 (\deg \mu_A)![A,B]^{2^{\deg \mu_A} - 1} = 0 $$
Hence, $[A,B]$ is nilpotent.