Let $S\in\mathbb{R}^{N\times N }$ be an orthogonal matrix and denote $S_{N,N-1}\in\mathbb{R}^{N \times N-1}$ as the matrix with the same elements of $S$ but without the last column of $S$.
Let $A\in\mathbb{R}^{N\times N}$ be of full rank.
I am searching for a representation of the Inverse of $K:=S_{N,N-1}'AS_{N,N-1}$