$\int_0^1 \frac{x-1}{\ln(x)} dx = \ln(2)$
First i try $\ln(x)=t$ so that $\frac{1}{x} dx =dt$ then integral becomes \begin{align} &\int_{-\infty}^{0}\frac{e^t-1}{t} (e^t dt) = - \int_0^{\infty} \frac{e^{-t}-1}{t} e^{-t} dt = -\int_0^{\infty} (t^{-1} e^{-2t} - t^{-1} e^{-t})dt \\ & = - \ln(t) e^{-2t} |_{0, \infty} - 2 \int_{0}^{\infty} \ln(t) e^{-2t}dt + \ln(t) e^{-t}|_{0, \infty} + \int_0^{\infty} \ln(t) e^{-t} dt \end{align} This substitution reproduce the integral form of \begin{align} \int_0^\infty \ln(t) e^{-t} dt \end{align}
hmm.
I want to know other kinds of evaluating $\int_0^1 \frac{x-1}{\ln(x)} dx = \ln(2)$ and evaluating of $\int_0^\infty \ln(t) e^{-t} dt$.