For this I find it more convenient to write $d_n$ for $!n$. Start with the recurrence
$$d_{n+1}=n(d_n+d_{n-1})\;;$$
you can find a proof here. Now rewrite the second identity that you want to prove as
$$d_n-nd_{n-1}=(-1)^n\;;$$
we’ll prove this by induction on $n$. I’ll let you verify the base case; the induction step is
$$\begin{align*}
d_{n+1}-(n+1)d_n&=n(d_n+d_{n-1})-(n+1)d_n\\
&=nd_{n-1}-d_n\\
&=-(d_n-nd_{n-1})\\
&=-(-1)^n\\
&=(-1)^{n+1}\;.
\end{align*}$$
The first identity is derived from the exact formula
$$d_n=n!\sum_{k=0}^n\frac{(-1)^k}{k!}\;,$$
a proof of which can be found here, and the Taylor series
$$e^x=\sum_{k\ge 0}\frac{x^k}{k!}\;,$$
which at $x=-1$ becomes
$$\frac1e=\sum_{k\ge 0}\frac{(-1)^k}{k!}\;.$$
Now for each $n$ we have
$$\begin{align*}
\frac{n!}e&=n!\sum_{k=0}^n\frac{(-1)^k}{k!}+n!\sum_{k\ge n+1}\frac{(-1)^k}{k!}\\
&=d_n+n!\sum_{k\ge n+1}\frac{(-1)^k}{k!}\;,
\end{align*}$$
so
$$\left|d_n-\frac{n!}e\right|=n!\left|\sum_{k\ge n+1}\frac{(-1)^k}{k!}\right|\;.$$
The series $\sum_{k\ge n+1}\frac{(-1)^k}{k!}$ is alternating, and the absolute value of its first term is $\frac1{(n+1)!}$, so
$$\left|\sum_{k\ge n+1}\frac{(-1)^k}{k!}\right|<\frac1{(n+1)!}\;.$$
Thus, for $n\ge 1$ we have
$$\left|d_n-\frac{n!}e\right|=n!\left|\sum_{k\ge n+1}\frac{(-1)^k}{k!}\right|<\frac{n!}{(n+1)!}=\frac1{n+1}\le\frac12\;.$$
Since $d_n$ is an integer, this means that it’s the integer nearest to $\frac{n!}e$, denoted by $\left[\frac{n!}e\right]$, which is $\left\lfloor\frac{n!}e+\frac12\right\rfloor$.