$R$ is a finite ring and for every $a\in\,R$ there exist natural number $n(a)>1$ that $a^{n(a)}=a$ . Is $R$ a ring with identity?
If this question is correct then, for every $a \in R\,\,,a^{n(a)-1}$ is identity of $R$. I prove that $a^{n(a)-1}\in Z(R)$. But how I can prove that for every $a \in R\,\,,a^{n(a)-1}$ is identity of $R$?
I find a proof for my quastion as follows :
Let $R=\{a_1,a_2,...,a_n\}$.
We know for any $a_i$ there exit $n_i$ s.t $a_i^{n_i}=a_i$ and $a_i^{n_i-1}\in Z(R)$.
It is enough to show that there exit a some element $e$ s.t $ea_i=a_ie=a_i$.
I'm going to construct an identity's element.
Consider:
$e_1=a_1^{n_1-1}$ $\Rightarrow \, e_1a_1=a_1e_1=a_1$
$e_2=e_1+a_2^{n_2-1}-e_1a_2^{n_2-1}\Rightarrow \, e_2a_1=a_1e_2=a_1 \,\,, \,\,e_2a_2=a_2e_2=a_2$
$e_3=e_2+a_3^{n_3-1}-e_2a_3^{n_3-1}\Rightarrow \, e_3a_1=a_1e_3=a_1 \,\,, \,\,e_3a_2=a_2e_3=a_2\,\,, \,\,e_3a_3=a_3e_3=a_3$
$$. \\
. \\
. $$
$e_n=e_{n-1}+a_n^{n_n-1}-e_{n-1}a_n^{n_n-1}\Rightarrow$ for every $0\leq i\leq n$ we have $e_na_i=a_ie_n=a_i \Rightarrow \, 1_R=e_n$.