Let $BL^1_{loc}$ be the space of locally integrable functions $f:\mathbb{R}\to \mathbb{R}$ such that $|f|=\sup_{x\in \mathbb{R}}\int_x^{x+1}|f(y)|dy<\infty$. Is this space complete ?
What I tried: Let $(f_n)_{n\in \mathbb{N}}$ be a sequence of $BL^1_{loc}$ such that $$\sup_{x\in \mathbb{R}}\int_x^{x+1}|f_p(y)-f_q(y)|dy\to0,$$ when $p,q\to\infty$. Then, we have $$\int_{-N}^{N}|f_p(y)-f_q(y)|dy\to0,$$ for any $N$, so the sequence of functions $f_n$ is Cauchy in $L^1([-N,N])$ for each $N$, so we have an $L^1-$limit function $f$ for each compact interval, but I don't know if this function satisfies $$\sup_{x\in \mathbb{R}}\int_x^{x+1}|f_n(y)-f(y)|dy\to 0.$$I see that I didn't use the fact that we have uniformity for $x\in \mathbb{R}$.