First of all for both integrals to exist we need $ d> \sqrt{2}$ or otherwise the integral is divergent around plus infinity. Now the first integral has a closed form in terms of the Owen's T function as shown below:
\begin{eqnarray}
&&\int\limits_0^\infty \operatorname{erfc}(c+ \imath x) \exp(-\frac{1}{2} d^2 x^2+\imath c x) dx=\\
&& \exp(-\frac{1}{2} \frac{c^2}{d^2} ) \frac{\sqrt{2\pi}}{d} \int\limits_{-\imath \frac{c}{d}}^\infty \operatorname{erfc}(c-\frac{c}{d^2}+\imath \frac{x}{d}) \frac{\exp(-1/2 x^2)}{\sqrt{2 \pi}} dx=\\
&& \exp(-\frac{1}{2} \frac{c^2}{d^2} ) \frac{\sqrt{2\pi}}{d} \left( \frac{1}{2} \operatorname{erfc}(-\imath \frac{c}{\sqrt{2} d}) - 2 T(-\imath \frac{c}{d}, \imath\frac{\sqrt{2}}{d},(c-\frac{c}{d^2})\sqrt{2})\right)=\\
&&- \frac{\exp(-\frac{1}{2} \frac{c^2}{d^2} )}{\sqrt{2 \pi}d}
\left(
4 \pi T\left(\frac{c-\frac{c}{d^2}}{\sqrt{\frac{1}{2}-\frac{1}{d^2}}},\frac{i d}{\sqrt{2} \left(d^2-1\right)}\right)+4 \pi T\left(\frac{i c}{d},i \sqrt{2} d\right)+\pi
\operatorname{erf}\left(\frac{c-\frac{c}{d^2}}{\sqrt{1-\frac{2}{d^2}}}\right)-\pi \operatorname{erfc}\left(-\frac{i c}{\sqrt{2} d}\right)-2 i \tanh^{-1}\left(\frac{d}{\sqrt{2} \left(d^2-1\right)}\right)+2 i \tanh
^{-1}\left(\frac{\sqrt{2}}{d}\right)-2 i \tanh ^{-1}\left(\sqrt{2} d\right)
\right)
\end{eqnarray}
where $T(h,a)$ is the Owen's T function and $T(h,a,b)$ is the generalized Owen's T function (see Generalized Owen's T function).
In[1201]:= {d} = RandomReal[{Sqrt[2], 2}, 1, WorkingPrecision -> 50];
{c} = RandomReal[{0, 2}, 1, WorkingPrecision -> 50];
NIntegrate[ Erfc[c + I x] Exp[-1/2 d^2 x^2 + I c x], {x, 0, Infinity}]
NIntegrate[
Erfc[c + I Sqrt[2]/d x] Exp[- x^2 + I c Sqrt[2]/d x], {x, 0,
Infinity}] Sqrt[2]/d
Exp[-1/2 c^2/d^2] 1/d NIntegrate[
Erfc[c - c/d^2 + (I x)/d] Exp[-1/2 (x)^2], {x, -I c /(d) ,
Infinity}]
Exp[-1/2 c^2/d^2] 1/d Sqrt[
2 Pi] (1/2 Erfc[-I c /(d) 1/Sqrt[2]] -
2 T[-I c /(d), I/d Sqrt[2], (c - c/d^2) Sqrt[2]])
-Exp[-1/2 c^2/d^2] 1/(d Sqrt[2 Pi]) (2 I ArcTanh[Sqrt[2]/d] -
2 I ArcTanh[Sqrt[2] d] -
2 I ArcTanh[d/(Sqrt[2] (-1 + d^2))] + \[Pi] Erf[(c - c/d^2)/Sqrt[
1 - 2/d^2]] - \[Pi] Erfc[-((I c)/(Sqrt[2] d))] +
4 \[Pi] OwenT[(c - c/d^2)/Sqrt[1/2 - 1/d^2], (I d)/(
Sqrt[2] (-1 + d^2))] + 4 \[Pi] OwenT[(I c)/d, I Sqrt[2] d])
Out[1203]= 0.0185396 - 0.0478548 I
Out[1204]= 0.0185396 - 0.0478548 I
Out[1205]= 0.0185396 - 0.0478548 I
Out[1206]= 0.018539649231816650876610218020057720732515452423 -
0.047854753638600728058690767430930302821895582282 I
Out[1207]= 0.018539649231816650876610218020057720732515452423 -
0.0478547536386007280586907674309303028218955822824 I