Given $T$ observed vectors $x_i\in\mathbb{R}^N, i\in\{1,\ldots,T\}$. Define $\hat{\Sigma}$ as the corresponding empirical covariance-matrix of the Observations $X=\left(\begin{array}{c} x_1' \\ \vdots\\ x_T' \end{array}\right) \in\mathbb{R}^{T \times N}$.
\begin{align}
\hat{\Sigma}:=\frac{1}{T-1}X'(I_T-\frac{1}{T}\iota_T\iota_T')X
\end{align}
I am searching for an intuitive representation of $ \hat{\Sigma}^{-1}$.