Let $\lambda$ be a nonzero real constant. Find all functions $f,g : \mathbb R \rightarrow \mathbb R$ that satisfy the functional equation for all $x,y \in\Bbb R$: $$f(x + y) + g(x-y) = \lambda g(x) f(y)$$
I tried this: $y=0$ implies $f(x)+g(x)$=$\lambda g(x)f(0)$. Here we have two cases depending on $f(0)$:
- $f(0)=0$ or
- $f(0) \neq 0$.
If this is true, what next?