We have:
$$S(p,q)=\sum_{n\geq 1}\frac{(p+n)\cdot\ldots\cdot(p+1)}{(q+n)\cdot\ldots\cdot(q+1)}=\sum_{n\geq 1}\frac{\Gamma(p+n+1)\Gamma(q+1)}{\Gamma(q+n+1)\Gamma(p+1)}\tag{1}$$
but in virtue of the Euler product for the $\Gamma$ function (or by its log-convexity encoded in the Gautschi's inequality) we have:
$$\frac{\Gamma(z+\alpha)}{\Gamma(z)}=\Theta(z^\alpha)\tag{2}$$
as $z\to +\infty$, hence the series is converging for $q>p+1>0$ by the p-test.
Moreover, in such a case:
$$\begin{eqnarray*}S(p,q)&=&\frac{\Gamma(q+1)}{\Gamma(p+1)\Gamma(q-p)}\sum_{n\geq 1}B(p+n+1,q-p)\\&=&\frac{1}{B(p+1,q-p)}\int_{0}^{1}\sum_{n\geq 1}x^{p+n}(1-x)^{q-p-1}\,dx\\&=&\frac{1}{B(p+1,q-p)}\int_{0}^{1}x^{p+1}(1-x)^{q-p-2}\,dx\\[1em]&=&\frac{B(p+2,q-p-1)}{B(p+1,q-p)}=\color{red}{\frac{(p+1)}{q-(p+1)}}.\tag{3}\end{eqnarray*}$$